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Abstract

The conjugate mixed convection–conduction heat transfer of a non-Newtonian power-law fluid on a vertical heated plate which is moving in an
ambient fluid has been studied. The system of partial differential equations governing the flow and heat has been solved by using an implicit finite-
difference method. The surface heat transfer is found to depend on the non-Newtonian parameter, buoyancy force, generalized Prandtl number,
Peclet number and material parameter and it increases with these parameters except for the material parameter where it decreases. The Nusselt
number and the wall temperature decrease with increasing distance along the plate. The skin friction coefficient increases with the buoyancy
parameter. It also increases with the non-Newtonian parameter near the slot, but decreases away from the slot.
 2005 Elsevier SAS. All rights reserved.
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1. Introduction

The transfer of heat and momentum from a heated moving
surface in an otherwise ambient medium occur in many man-
ufacturing processes such as rolling sheet drawn from a die,
cooling and/or drying of paper and textile, manufacturing of
polymeric sheets, sheet glass and crystalline materials etc. [1,2].
When the material emerges from the die or roller, its tempera-
ture is higher than that of the surroundings. Generally, this high
temperature is due to the external heating as in the case of hot
extrusion. Plastic deformation of the material and the friction
between the flowing material and the die also contribute to the
heating. In the case of cold extrusion, a portion of heat gener-
ated is lost to the die and the remaining heat is dissipated to the
environment. In many practical applications, the extruded mate-
rial passes through a cooling bath as in the case of wire cutting
discussed by Fisher [2]. Sakiadis [3] was the first to study the
flow due to a solid surface moving with a constant velocity in
an otherwise ambient fluid. Due to the entrainment of ambient
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fluid, this problem represents a different class of boundary layer
problem which has a solution different from that of boundary
layer flow over a stationary surface. The corresponding heat
transfer problem was studied theoretically and experimentally
by Tsou et al. [4], theoretically by Erickson et al. [5] and exper-
imentally by Griffin and Thorne [6]. Jeng et al. [7] considered
the flow and heat transfer characteristics over a moving sur-
face in an ambient fluid. Moutsoglou and Chen [8] and Takhar
et al. [9] examined the effect of buoyancy forces on an inclined
surface moving in an ambient fluid.

In the studies mentioned above [3–9], the thickness of the
plate was assumed to be small and the plate surface to be
isothermal. However, in several practical problems mentioned
earlier, the thickness of the emerging plate is finite. When the
material loses energy, the temperature distribution in the ma-
terial becomes important as in the case of continuous casting
and plastic extrusion. Jaluria and Singh [10] obtained the tem-
perature distribution for a moving plate and a circular rod for
the constant wall temperature case. Chida and Katto [11] an-
alyzed the conjugate heat transfer of continuous moving sur-
face and verified their results by measurement. Karwe and
Jaluria [12] have also studied the conjugate heat transfer prob-
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Nomenclature

cf , cp specific heat of the fluid and plate,
respectively . . . . . . . . . . . . . . . . . . . . . . . J·kg−1·K−1

Cf x skin friction coefficient, m(|∂u/∂y|)Ny=0/ρU2
0

d half of the plate thickness . . . . . . . . . . . . . . . . . . . . m
g acceleration due to gravity . . . . . . . . . . . . . . . m·s−2

GrL Grashof number, gβ(T0 − T∞)L3/(αf Pr)2

Kf , Kp thermal conductivity of the fluid and plate,
respectively . . . . . . . . . . . . . . . . . . . . . . . W·m−1·K−1

L length scale . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . m
m consistency index . . . . . . . . . . . . . . . . . kg·m−1·sN–2

N dimensionless flow index
Nux Nusselt number, −x(∂T /∂y)y=0/(Tw − T∞)

Pe Peclet number, U0d
2/(αpL)

Pr generalized Prandtl number,
U0 L(ReL)−2/(N+1)/αf

R property (material) parameter,
[(Kρc)f /(Kρc)p]1/2

ReL Reynolds number defined with respect to L,
U2−N

0 LN/(m/ρ)

Rex Reynolds number defined with respect to x,
U2−N

0 xN/(m/ρ)

Rix Richardson number defined with respect to x,
gβ(T0 − T∞)x/U2

0
T temperature of the fluid . . . . . . . . . . . . . . . . . . . . . . K
T0 temperature of the plate at the slot . . . . . . . . . . . . K
Tp temperature of the plate . . . . . . . . . . . . . . . . . . . . . . K
T∞ ambient temperature . . . . . . . . . . . . . . . . . . . . . . . . . K

u,v dimensional velocity components along and
normal to the plate . . . . . . . . . . . . . . . . . . . . . . m·s−1

U0 velocity of the plate . . . . . . . . . . . . . . . . . . . . . m·s−1

U,V dimensionless velocity components,
U = u/U0, V = (v/U0)Re1/(N+1)

L

x, y dimensional distances along and perpendicular to
the plate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . m

X,Y dimensionless distances,
X = x/L, Y = y Re1/(N+1)

L /L

yp dimensional distance within the plate . . . . . . . . . m
Yp dimensionless distance, yp/d

Greek symbols

α thermal diffusivity . . . . . . . . . . . . . . . . . . . . . . m2·s−1

β coefficient of thermal expansion . . . . . . . . . . . . K−1

θ dimensionless temperature of the fluid,
(T − T∞)/(T0 − T∞)

θp dimensionless temperature of the plate,
(Tp − T∞)/(T0 − T∞)

λ buoyancy parameter,
GrL/Re4/(N+1)

L = gβ(T0 − T∞)L/U2
0

ρ density . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . kg·m−3

Subscripts

f,p conditions in the fluid and on the plate, respectively
w,∞ conditions at the wall and in the ambient fluid,

respectively
lem under boundary layer approximations. Further, Karwe and
Jaluria [13,14] and Kang and Jaluria [15] considered more
general problem and solved both the boundary layer and the
Navier–Stokes equations along with the energy equation by us-
ing finite-difference technique. In a recent review, Viskanta and
Bergman [16] discussed several aspects of the moving plate
problem which include the effects of the conjugate bound-
ary conditions at the plate surface, the effects of an externally
induced forced flow and the effects of suction and injection
through the stretched surface. Al-Sanea and Ali [17] studied the
effects of the extrusion die and suction/injection at the moving
surface on the skin friction and heat transfer with emphasis on
the region close to the extrusion slot using the Navier–Stokes
and energy equations. They obtained critical Reynolds num-
bers to distinguish between the self-similar and non-similar
regions. However, the buoyancy effects were not considered.
Subsequently, Al-Sanea [18] extended the above analysis [17]
to include the effects of buoyancy forces.

In recent years, non-Newtonian fluids find increasing appli-
cations in chemical process industries, petroleum production,
power engineering and food engineering. Many of the non-
Newtonian fluids used in chemical engineering follow the em-
pirical Ostwald–de Waele power-law model for the shear stress.
Char and Chen [19] considered the flow and heat transfer of
such a fluid over a stretching surface with variable heat flux
condition at the wall. Pop et al. [20] studied the heat transfer
characteristic of a non-Newtonian fluid over a moving cylin-
der. Pop and Gorla [21] obtained the second-order boundary
layer solution for this problem. Tsai and Hsu [22] investigated
the conjugate convection–conduction heat transfer of a non-
Newtonian power-law fluid over a continuously moving plate
and obtained the solution of the governing boundary layer equa-
tions by using cubic spline collocation method.

This paper considers the conjugate heat transfer problem
including convection and conduction from a heated verti-
cal plate of finite thickness moving with a constant veloc-
ity in a non-Newtonian power-law fluid. The buoyancy force
arises due to the temperature difference between the heated
surface and the fluid. The partial difference equations gov-
erning the natural convection flow over a vertical moving
surface have been solved numerically by using an implicit
finite-difference method [23,24]. The effects of the buoyancy
and non-Newtonian parameters, generalized Prandtl number,
Peclet number and the parameter characterizing the material
properties of the fluid and plate have been examined in de-
tails. The results have been compared with those of Karwe and
Jaluria [13] and Tsai and Hsu [22]. Our problem may be re-
garded as an extension of the work of Karwe and Jaluria [13]
to include the effects of non-Newtonian fluids and of Tsai and
Hsu [22] to include the effects of buoyancy forces. The present
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analysis will be useful in wire plastic coating process. In this
case, the metal wire is coated with a plastic sheath from an
extruder and then the insulated wire passes through a cooling
system. The size of the cooling bath varies according to the
volume of the plastic to be cooled. The length of the bath can
be calculated depending upon properties of the materials, the
conditions of extrusion, i.e., speed, temperature etc., and the
temperature of the cooling medium. With increasing speeds of
extrusion, the amount of time the material spends in the cooling
bath can be reduced.

2. Formulation and analysis

Let us consider a continuous vertical heated plate of thick-
ness 2d (Fig. 1). The plate emerges from a slot at constant tem-
perature T0 and is continuously moving with uniform velocity
U0 in an otherwise quiescent non-Newtonian fluid with constant
temperature T∞. The temperature T0 of the plate is much higher
than the fluid temperature T∞ (T0 > T∞) and this gives rise to
buoyancy forces. The induced motion of the fluid is assumed
to be laminar, steady, and two-dimensional with thermally ac-
tive incompressible viscous fluid with constant properties. Due
to the viscous drag at the surface of the place, flow is induced
in the vicinity of the plate surface. The plate also loses energy
to the ambient fluid. We take two different stationary axes at the
origin located at the slot. The positive x-axis is parallel to the
plate and in the direction of the motion of the plate. The y-axis
for the fluid is outside the plate and for the plate it is located
inside the plate and is denoted by yp . The two scales origi-
nate at the slot and extend normal to the plate. The buoyancy
force acts in the negative x direction. Viscous dissipation in the
energy equation has been neglected. The non-Newtonian fluid
is assumed to follow the Ostwald–de Waele power-law model.
Here we have used the boundary layer approximations which
are not valid at or near the slot. In addition, the energy equation
for the temperature distribution within the moving plate is used,
neglecting the axial conduction. Under the above assumptions
and invoking the Boussinesq approximation, the boundary layer
equations based on the conservation of mass, momentum and

Fig. 1. Physical model and coordinate system.
energy governing the flow and heat transfer of a non-Newtonian
power-law fluid over a moving vertical plate can be expressed
as [13,22]
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The boundary conditions for the flow field are given by

u = v = 0, T = T∞ for x = 0, y > 0,

u = U0, v = 0, T = Tp(x, d) for x � 0, y = 0

u → 0, T → T∞ for x > 0, y → ∞ (4)

The energy equation for the temperature distribution within
the moving plate neglecting the axial conduction is given by

U0
∂Tp

∂x
= αp

∂2Tp

∂y2
p

(5)

with the corresponding boundary conditions

Tp(0, yp) = T0 for x = 0
∂Tp

∂yp

= 0 for x � 0, yp = 0

Kp

∂Tp

∂yp

= Kf

(
∂T

∂y

)
y=0

for x > 0, yp = d (6)

Here x and y are the distances along and normal to the plate,
u and v are the velocity components along x and y directions, N
is the index in the power-law variation of the surface shear stress
and N < 1 for pseudoplastic fluids, N > 1 for dilatant fluids
and N = 1 for Newtonian fluids, T is the temperature, T0 is the
temperature of the plate at the slot, g is the acceleration due to
the gravity, ρ is the density, β is the volumetric coefficient of
the thermal expansion, m is the consistency of power-law fluids,
α is the thermal diffusivity, 2d is the thickness of the plate, K is
the thermal conductivity, the subscripts f and p denote values
in the fluid and at the plate, and the subscripts w and ∞ denote
conditions at the wall and in the ambient fluid.

By using the vectorial dimensional analysis of Chida and
Katto [25] which distinguishes phases it can be shown that
the main factors that affect this problem are three: physical
properties of the fluid and plate material, buoyancy force and
non-Newtonian parameter. On the other hand, the approach of
Karwe and Jaluria [13] and Tsai and Hsu [22] shows that this
phenomenon is affected by buoyancy force λ, non-Newtonian
parameter N , Prandtl number Pr, Peclet number Pe and physi-
cal properties parameter R. Therefore the analysis of Chida and
Katto [25] yields more compact representation. However, we
have followed the analysis of Karwe and Jaluria [13] and Tsai
and Hsu [22] so that our results could directly be compared with
their results.

It is convenient to work with dimensionless equations.
Hence, we apply the following transformations
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X = x/L, Y = y Re1/(1+N)
L /L, Yp = yp/d

U = u/U0, V = (v/U0)Re1/(N+1)
L

θ = (T − T∞)/(T0 − T∞), θp = (Tp − T∞)/(T0 − T∞)

ReL = U2−N
0 LN/(m/ρ)

GrL = gβ(T0 − T∞)L3/(αf Pr)2

Pr = U0L(ReL)−2/(N+1)/αf

Pe = U0d
2/(αpL), R = [

(Kρc)f /(Kρc)p
]1/2

λ = GrL/(ReL)4/(N+1) = gβ(T0 − T∞)L/U2
0 (7)

to Eqs. (1)–(6) and we get the following system of equations.
For the fluid

∂U

∂X
+ ∂V

∂Y
= 0 (8)

U
∂U

∂X
+ V

∂U

∂Y
= ∂

∂Y

[∣∣∣∣∂U

∂Y

∣∣∣∣
N−1

∂U

∂Y

]
+ λθ (9)

U
∂θ

∂X
+ V

∂θ

∂Y
= Pr−1 ∂2θ

∂Y 2
(10)

For conduction within the plate (neglecting the conduction
in x-direction)

∂θp

∂X
= Pe−1 ∂2θp

∂Y 2
p

(11)

with boundary conditions for the fluid and plate [22]

U = V = θ = 0, X = 0, Y > 0

U = 1, V = 0, θ = θp(X,1), X � 0, Y = 0

U → 0, θ → 0, X > 0, Y → ∞
θp(0, Yp) = 1, X = 0

∂θp

∂Yp

= 0, X � 0, Yp = 0

∂θp

∂Yp

= R(Pe/Pr)1/2
(

∂θ

∂Y

)
Y=0

, X > 0, Yp = 1 (12)

The symbol L used above stands for an arbitrarily chosen
length scale in the boundary layer approximation. Since there
is no representative length scale along the length of the plate,
any arbitrarily chosen value of L may be employed for non-
dimensionalization and for yielding results in the entire flow
field. This is similar to the self-similar flow over a stationary
plate. Here we have taken L = 0.25 m.

Here X and Y are the dimensionless distances along and per-
pendicular to the plate, U and V are the dimensionless velocity
components along X and Y directions, θ is the dimensionless
temperature, ReL is the Reynolds number, GrL is the Grashof
number, Pe is the Peclet number, Pr is the generalized Prandtl
number, λ is the buoyancy parameter, R is the physical prop-
erties parameter and the subscripts f and p denote fluid and
plate, respectively.

It may be noted that Eqs. (8)–(12) for N = 1 (Newtonian
fluids) are identical to those of Karwe and Jaluria [13] and for
λ = 0 (forced convection flow) with those of Tsai and Hsu [22].
In the absence of conduction within the plate (θp = 1) and
N = 1, Eqs. (8)–(10) are identical to those of Moutsoglou and
Chen [8] when λ � 0 and to those of Tsou et al. [4], Erickson
et al. [5] and Griffin and Thorne [6] when λ = 0.

The quantities of physical interest are the local Nusselt num-
ber Nux and skin friction coefficient Cf x and they are expressed
as

Nux = −L(∂T /∂y)y=0/(T0 − T∞)

= −(ReL)1/(N+1)(∂θ/∂Y )Y=0

Cf x = m
(|∂u/∂y|)N

y=0/ρU2
0

= (ReL)−1/(N+1)

(
∂U

∂Y

)N

Y=0
(13)

where Nux and Cf x are the local Nusselt number and skin fric-
tion coefficient, respectively.

It may be remarked that the results in the elliptic region
close to the slot obtained by using the boundary layer ap-
proximations would be unrealistic. The accuracy of such re-
sults near the slot can be determined by comparison of ellip-
tic solutions (Navier–Stoker equations) and parabolic solutions
(boundary layer equations). However, some useful information
about the value of the distance X beyond which the bound-
ary layer approximations are valid can be obtained by link-
ing the values of X (= x/L) to the values of Reynolds num-
ber Rex(= U2−N

0 xN/(m/ρ)) and Richardson number Rix(=
gβ(T0 − T∞)x/U2

0 ) based on the distance x measured from
the slot along the plate provided L is known [18]. Since L is an
arbitrarily chosen length scale, it is not possible to obtain the
value of X beyond which the boundary layer approximations
are valid.

3. Method of solution

Eqs. (8)–(11) under conditions (12) have been solved by us-
ing an implicit tri-diagonal variable step size finite-difference
methodology similar to that discussed by Blottner [23] and
Patankar [24]. Variable step size in X and Y directions has
been used. The initial step size and the growth factor in Y and
X directions are 0.001, 1.03, and 0.01, 1.01, respectively. All
first-order derivatives with respect to X are replaced by two-
point backward difference formulae. Eqs. (9), (10) and (12) are
discretized by using three-point central difference formulae in
Y direction, whereas in Eq. (8) the first order derivative with re-
spect to Y is discretized by using trapezoidal rule. The problem
is solved as an initial value problem with X playing the role of
time. At each line of constant X, linear tri-diagonal matrix of
linear algebraic equations has been solved by using the Thomas
algorithms [23] where iteration has been used to deal with the
nonlinear terms in the governing equations. A convergence cri-
terion based on the difference between the current and previous
iterations is used. If this difference reaches 10−5, the solution
is assumed to have converged and the iterative process is ter-
minated. The choice of initial step size and the growth factors
in X and Y directions has been arrived after numerical experi-
mentation to ensure grid independence.
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4. Results and discussion

As mentioned earlier, we have solved the governing equa-
tions by using an implicit finite-difference scheme. For New-
tonian fluids (N = 1) in the absence of conduction within the
plate (θp = 1), we have compared the velocity profile (u/U0)

for λ = 0,X = 3 with the theoretical and experimental results
of Tsou et al. [4]. The comparison is shown in Fig. 2. The
velocity profile is found to be in very good agreement with
the theoretical results. It also agrees well with the experimen-
tal results near the wall. Further the Nusselt number Nux for
λ = 0,X = 3 has been compared with the theoretical values
of Erickson et al. [5] and experimental values of Griffin and
Thorne [6]. The comparison is presented in Fig. 3. The results

Fig. 2. Comparison of the velocity profile u/U0 for λ = 0, N = 1, X = 3 with
that of Tsou et al. [4].

Fig. 3. Comparison of the local Nusselt number Nux for λ = 0, N = 1, X = 3
with that of Erickson et al. [5], and Griffin and Thorne [6].
are in good agreement with the theoretical and experimental
values when the wall velocity U0 > 8.96(f t/s). We have also
compared the surface shear stress (∂U(X,0)/∂Y ) and the sur-
face heat transfer (−∂θ(X,0)/∂Y ) for θp = 1,X = 3 with the
tabulated results of Moutsoglou and Chen [8]. The results are
found to be in very good agreement. The maximum difference
is found to be about 1%. Hence the comparison is not shown
here. The results for X � 3 correspond to self-similar flow.
Hence the results for X > 3 can also be used. Further, we have
compared the variation of the centerline temperature θc with
X for R = 1.092, N = 1, Pr = 7, λ = 0, Pe = 0.01,0.1,1.0
with that of Karwe and Jaluria [13]. We have also compared the
Nusselt number (Re−1/(N+1)

L θwNux) for λ = 0, N = R = 0.5,
Pe = 0.1, Pr = 10,50,100 with that of Tsai and Hsu [22]. In

Fig. 4. Comparison of the centerline temperature, θc , for N = 1 with that of
Karwe and Jaluria [13].

Fig. 5. Comparison of the local Nusselt number, Re−1/(N+1)
L

θwNux , with that
of Tsai and Hsu [22].
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Fig. 6. Effects of the Peclet number Pe on the temperature distribution along
the transverse direction Y , θ(X,Y ).

both cases, the results are in very good agreement. The com-
parison is shown in Figs. 4 and 5.

The distribution of temperature θ along the transverse di-
rection Y for several values of Pe when Pr = 10, λ = 1,R =
N = 0.5,X = 2.5 is shown in Fig. 6. It is evident from Fig. 6
that the temperature profiles in the Y direction are nearly uni-
form within the plate for small Pe. Therefore, the assumption of
uniform temperature across the plate is justified in the govern-
ing equation for the plate. The information on the temperature
distribution is useful for the design of system required for the
particular manufacturing process.

Fig. 7 shows the effect of λ on the temperature profiles
θ(X,Y ). θ decreases with increasing λ due to the reduction in
the thermal boundary layer thickness.

Fig. 8 displays the effects of the buoyancy parameter λ on
the local Nusselt number (Re−1/(N+1)

L Nux) and the surface tem-
perature (θw) for N = R = 0.5,Pr = 10,Pe = 0.1. Since the
positive buoyancy force (λ > 0) acts like a favourable pres-
sure gradient, the fluid is accelerated which results in thinner
momentum and thermal boundary layers. Consequently, the
Nusselt number and wall temperature increase with λ. Since
the wall temperature tends to the ambient temperature away
from the slot, it continuously decreases with the distance X.
Hence the Nusselt number also decreases with the increasing
distance X. The above results are important in determining the
effects of the buoyancy forces on the thermal transport. They
are also useful in the determination of the length of the system.
For fixed values of other parameters, a simple correlation equa-
tion for the local Nusselt number Nux which is valid (within 5%
error) for 0 � λ � 10,X > 1.5 is given by

Nux/Nu∗
x = 1 + 0.1392λ + 0.0012λ2

where Nu∗
x is the Nusselt number for λ = 0.

Fig. 9 presents the effects of the buoyancy parameter λ on
the local skin friction coefficient (Re1/(N+1)

Cf x) for N = R =
L
Fig. 7. Effects of the buoyancy parameter λ on the temperature distribution
along the transverse direction Y , θ(X,Y ).

Fig. 8. Effects of the buoyancy parameter λ on the local Nusselt number,

Re−1/(N+1)
L

Nux , and wall temperature, θw .

0.5,Pr = 10,Pe = 0.1. As mentioned earlier, the positive buoy-
ancy force acts like a favourable pressure gradient which accel-
erates the fluid in the boundary layer. This results in thinner
boundary layer and hence in higher velocity gradient at the sur-
face. Therefore, the skin friction coefficient increases with λ.
For a fixed λ, the skin friction coefficient decreases with in-
creasing streamwise distance X. The reason for this trend is
that the boundary layer grows with the distance X which re-
duces the fluid motion in the boundary layer. Consequently, the
velocity gradient and hence the skin friction coefficient progres-
sively reduce as X increases.

Fig. 10 shows the effect of the non-Newtonian parameter
N on the skin friction coefficient (Re1/(N+1)

L Cf x) for Pr = 10,
Pe = 0.1,R = 0.5, λ = 3. The effect of N is found to be
more pronounced on the skin friction than on the heat transfer,
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Fig. 9. Effects of the buoyancy parameter λ on the local skin friction coefficient,

Re1/(N+1)
L

Cf x .

Fig. 10. Effects of the non-Newtonian parameter N on the local skin friction

coefficient, Re1/(N+1)
L

Cf x .

since N affects the momentum equation directly. In the region
0.1 � X < 0.3, the skin friction coefficient for the dilatant fluid
(N > 1) is found to be more than that of the pseudoplastic fluid
(N < 1), and beyond this region it is the other way around.
This trend is due to the relative importance of other parameters.
For a given fluid medium, the skin friction coefficient decreases
with increasing distance X. This behaviour is due to the in-
crease in the boundary layer thickness with X. Consequently,
the velocity gradient and hence the skin friction coefficient de-
crease with increasing X. Like the skin friction coefficient, the
Nusselt number also decreases with increasing X. This is due to
the reduction in the temperature difference as we move down-
stream from the slot. As mentioned earlier, the effect of N on
the Nusselt number is small. Hence it is not shown here.
Fig. 11. Effects of the Prandtl number Pr on the local Nusselt number,

Re−1/(N+1)
L

Nux .

The effects of the generalized Prandtl number Pr on the
local Nusselt number (Re−1/(N+1)

L Nux) for λ = 3,N = R =
0.5,P e = 0.1 are shown in Fig. 11. Since the increase in the
Prandtl number Pr results in thinner thermal boundary layer,
the Nusselt number increases with Pr. At X = 2.5, the Nus-
selt number increases by about 178% as Pr increases from
10 to 100. For a fixed Pr, the Nusselt number decreases with
increasing X. The reason for this trend has been explained ear-
lier. The correlation equation (within 8% difference) can be
expressed as

Nux/Nu∗
x = 1 + 0.0231Pr − 10−4 × 0.53Pr2

10 � Pr � 200, X > 1.5

where Nu∗
x is the Nusselt number for Pr = 10.

Fig. 12 illustrates the effects of the Peclet number Pe on
the surface temperature θw and the local Nusselt number
(Re−1/(N+1)

L Nux) for λ = 3,N = R = 0.5,Pr = 10. The in-
crease in Peclet number Pe implies that the plate is exposed to
the cooler ambient fluid for shorter durations. Hence less energy
is lost from the surface. Consequently, the surface temperature
and the Nusselt number increase with Pe. In this case, the cor-
relation equation (within 10% difference) can be written as

Nux/Nu∗
x = 1 + 0.23605Pe − 0.02775Pe2

0.05 � Pe � 5,X > 1.5

where Nu∗
x is the Nusselt number for Pe = 0.05.

Fig. 13 presents the effects of the material parameter R

on the surface temperature θw and the local Nusselt number
(Re−1/(N+1)

L Nux) for λ = 3, N = 0.5, Pe = 0.1, Pr = 10. For
smaller values of R (i.e., for a plate with large thermal ca-
pacity or high thermal conductivity), the Nusselt number and
surface temperature are more than those for larger values of R.
Hence the heat transfer or surface temperature can be reduced
by proper choice of R.
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Fig. 12. Effects of the Peclet number Pe on the local Nusselt number,

Re−1/(N+1)
L

Nux , and the wall temperature, θw .

Fig. 13. Effects of R on the local Nusselt number, Re−1/(N+1)
L

Nux , and the
wall temperature, θw .

5. Conclusions

The heat transfer increases with the buoyancy force, Prandtl
number and Peclet number, but it decreases with increasing
material parameter. The skin friction and the Nusselt number
show some interesting behaviour for the non-Newtonian flu-
ids characterized by the parameter N . They increase with the
non-Newtonian parameter near the slot, but show opposite trend
away from the slot. The surface temperature and the Nusselt
number decay in the material as one moves away from the slot
or die. The above results are useful in the evaluation of the rel-
ative importance of various parameters in the thermal transport
and in determining the system length required for attaining a
given temperature level. Also, if there is a limitation on the to-
tal length of the system, the present results can be employed to
determine if any additional cooling arrangement is needed or if
the choice of the fluid will be required. Any practical system has
to consider all these factors in achieving the optimized design.
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